
DISTRIBUTION OF MOIST AND DRY PORES IN A 

MOIST POROUS MATERIAL (A PROBABILITY MODEL) 
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We propose a model and a method for the calculation of the concentrations of  completely fluid- 
filled, partially moist, and dry pores in a moist porous material. The method is based on the probability 
approach in which the distribution of fluid in pores is accomplished by means of "scattering" through 
the pores in random fashion of  quantities of  fluid whose volume is dependent on the wetting angle. 

When a porous material is saturated to a moisture content co a portion of the pores may remain dry. As ~0 increases 

the fraction of dry pores diminishes and when r = 1 it is equal to 0. Krisher has introduced the function b(oJ) equal to 

the ratio of  the moist-air volume Vma in a porous body to the entire volume of air within the pores [1]: 

Vma 
b = Vmaq- Vda (l)  

He makes use of this function in his model to calculate the thermal conductivity of moist materials. This is shown graphically 
in Fig. I. Based on the data derived by Krisher  [l], the function b(w) from [2] was approximated by the relationship 

b (co) = 1 - -  exp ( - -  7~)). (2) 

A fundamental drawback of  this method is the fact that the numerical values for  the function b(co) derived by Krisher 
through solution of the reciprocal problem for the thermal conductivity of moist materials, i.e., in using the experimental 

data on thermoconductivity,  he substituted these data into his moist-material model which was comprised of  a collection 
of plates oriented parallel and perpendicular to the flow of heat, and he determined the values of  b(~o). Thus an error 

generated by the model itself was introduced into the calculation. 
The approximation formula (2) does not satisfy the limit transition for the case in which ~o = 1, since in this case 

b must be equal to 1, nor has its dependence on the wetting angle ~ been taken into consideration. 
Let us determine the fraction of  the moist and dry pores for a given moisture content, utilizing the probability 

approach. With this in mind, we will represent a porous body in the form of a collection of  a large number of cells in 

communication with each other. The process of  saturating the material with moisture will be treated as the "scattering" 

in random fashion, through the cells, of  quantities of fluid with a volume vg. In this connection we make only one assumption, 

namely: any number of  such individual quantities of fluid may enter any given cell. This will be valid provided that 

v e will be smaller than the pore volume Vpo r of a single cell. The validity of this assumption in the case of small oJ is obvious, 
since in this case the probability of multiple entry into a single cell will be infinitesimally small (the number N of cells 

is infinitely large). However,  if the moisture content is sufficiently large, the moist cells will be in contact with each 
other and therefore,  when a particular quantity of fluid enters a cell the fluid will spread out over the entire cluster of 

moist cells. 
Let us introduce the quantity "t which represents the fraction of the number of dry cells and let us also introduce 

the quantity/~ which is the ratio of the number n of events to the entire number N of cells in the system. Let us first 

take a look at the dry material ('t = 1) and project  n 1 events as a result of which the fraction 7(/~1) of  cells will remain 

dry. We will then project  an additional n 2 events. Since the events occur in a random manner, on the average the 
quantities of  moisture entering the moist cells will be proportional to the fraction of  moist and dry cells, and the fraction 

of dry cells after  the second series of  events will become equal to 

"~ (~1 + ~2) = "~ (~1) V (~2)" (3) 
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Fig. 1. Ratio of the 

moist-air volume in 

a porous body to the 

entire volume of air 

in the pores, as a 

function of the 

moisture content [ 1 ]. 

We know that the function satisfying (3) has the form 

~, (~) = Cap~. (4) 

Let us determine the constants C, a, and p. When/~ = 0, 7 is equal to 1 and, consequently, C : 1. When # << 1, the 

function 7(3) must equal 1 - 3 since in this case the probability of entering (repeatedly) a single cell is negligibly small. 

If  we expand 7(#) in series, we can write 

~? (~) = 1 q- p~ in a. (5) 

When we take into consideration that in this case "1(3) = 1 -/~, we will express p from (5): 

1 
P = - -  lna (6) 

and we will substitute into (4) 

(~3) = a - , a / ' ~  == exp (--  [~). (7) 

We will write the expression for the moisture content w: 

lz v f 
~o = l~c%, (8) 

N q po r 

where ~o o is the moisture content equal to the ratio of the volume of fluid in a single event to the pore volume within 

the cell. Using (7) and (8) we obtain 

(1~) exp ( - -  co . (9) 

Formula (9) must satisfy the following limit transitions: "/= 1 for a~ = 0 and 7 = 0 for w = 1. We might take note of the 

fact that the second condition will be satisfied only in the event that ~o tends to 0. As a result "t(o0 degenerates into the 

function 

1 when ~ = O, 

= 0 when ~=/=0, (10) 

which in turn presupposes the total absence of dry pores when ~o ~ 0. This circumstance was utilized in the construction 

of a model for moist porous materials in [3], where it was assumed that all of the pore cells had been filled in identical 

uniform fashion with moisture. We can make use of this assumption only in the case of  small wetting angles, when it 

serves a useful function for the fluid to wet as large an area as possible of the surface of  the pore space. In the case of 

large wetting angles, where the fluid does not wet the surface of the pores, the assumption with respect to uniform 

distribution of fluid through the pores becomes invalid. In particular, it was demonstrated in [4] that when 0 >_ 150" 

the fluid is distributed through granular material in the form of individual batches. 

Let us now imagine that w o is not an infinitely small quantity. This will lead to a situation that in a system with 

an increasing moisture content w the number of cells entirely filled with fluid will increase as well. Consequently, the 

fraction of cells over which the moisture can be distributed is reduced. 
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Let us introduce the following quantities: a ffi Nfil/N is the fraction of  cells entirely filled with fluid; a = Nm/N 

is the fraction of  cells that are moist but are not entirely filled with fluid. These quantities satisfy the equation 

~ + a + v = l .  (11) 

We can also write the following expression: 

o ) = ~ + ~ a ,  (12) 

where w is the average moisture content of  the fluid in the moist cells. For the sake of  simplicity we can assume that 
0 ) - - W .  

Let us assume an infinitely small number dn of  events. In this case (1 - a) will not change and in analogy with 
(3) we can write 

(~ + aN) = r (~) ~ (d~), 
d n  

N ( 1 - - ~ )  

With consideration of  (13) the differential  d ' /wi l l  be as follows: 

(13) 

d? = -r (N + aN) - -  7 (~) = ~? (~) 7 (d~) - -  ~? (15) = y (~)(~ (d~) - -  I). (14) 

Here 

"~ (dl~) = y (dn) = exp (--  d~) = exp N (1 - -  ~) " 

Let us expand ~/(dn) in series and limit ourselves to the first term of the series 

(15) 

�9 ~ (dn)  = 1 
d n  

N ( 1 - - u )  
(16) 

When we substitute (16) into (14) we have 

d y  = - -  ? 
d n  

N ( 1 - - ~ )  
(17) 

From (11) and (12) let us express a as follows: 

o)7 
l - - o )  

(18) 

Utilizing (8), we will make the substitution 

dn do) 

N o)o 

Substituting (18) and (19) into (17) yields 

d~------ ,Oo(1- 
l - - o ) /  

We derived an ordinary f i rs t -order  differential  equation with the following initial condition: 

3?(0)= 1. 

(19) 

(20) 

(21) 
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Fig. 2. The concentration of dry, partially moist, and completely f luid-f i l led pores (curves 

1, 2, 3) as functions of  the moisture content at various wetting angles 0: a) ~9 = 0, ~o = 

0.16; b) O = 45 ~ oJ o = 0.41; c) t9 = 90", o: o = 0.72; d) oJ o -- 1. 

The quantity o: o can be selected on the basis of  considerations such that in the entry of  the fluid into the cell it 

has the possibility of  becoming distributed over all of  the cells formed into a single cluster. The min imum value of w o 

in this case will be equal to the first critical moisture content w o = oJ' [3]. For wetting angles equal to 0, 45, and 90*, 

the values of  w' will equal, respectively, 0.16, 0.41, and 0.72. 

Equation (20) with initial condition (21) was solved numerically on a computer.  The results f rom the calculation 

of the relationships between ~ and 7, a,  and o can be seen graphically in Fig. 2. The fraction 7 of  dry cells as a function 

of w diminishes monotonically, and this rate of  diminution depends on @. The fraction of moist cells will be nonmonotonic 

in nature. When the moisture content changes f rom zero signal will increase to some maximum value and it will then 

drop down to zero when w = 1. This is explained by the fact that in the case of  low moisture content as a result of  the 

filling of the cells with moisture the fraction of moist cells increases due to the reduction in the fraction of dry cells, 

and the number  of  cells entirely filled with moisture in this case is insignificant. As co increases, the fraction of filled 

cells will increase, and a3 a result of  this the fraction of moist cells begins its reduction down to zero. The maximum 

fraction of moist pores with an increase in the wetting angle t9 will shift in the direction of lower values of  w. 

For purposes of  verification we undertook a calculation with ~o o = 1. In this case, there will exist within the system 

only two types of  cells: dry and those that are entirely filled. The dependence of  q and a on ~o must be linear. In this 

case, 

~ ,=1--~r  ~ = w ,  (22) 

which is fully conf i rmed by calculation (Fig. 2d). 

In conclusion, let us note that the derived result can be utilized in the calculation of the conductivities (thermal 

conductivity, electrical conductivity,  etc.) for moist porous materials in the case in which it becomes necessary to take 

into consideration the distribution of  the fluid in the pores as a function of  the wetting angle. 

NOTATION 

w, volumetric moisture content of  the fluid; w', critical value of the moisture content; b, ratio of  molst-air  volume 

in the pores to the entire volume of air in the pores; tg, wetting angle, deg; v b volume of the elementary portion of fluid, 

m 3, vpor, pore volume, m3; N, number  of  cells; n, number  of  events; a,  o, 7, concentration of pores entirely filled with 

fluid, partially moist, and dry, in a porous material. 
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THE P-p--T DEPENDENCE OF DIETHYL SUCCINATE 

R. A. Mustafaev, D. K. Ganiev, and R. S. Ragimov UDC 547.571:532.14.001.5 

We have derived experimental results with respect to the P - p - T  dependence of  diethyl succinate. Based 

on these results we have compiled an equation of  state which allows us to calculate the thermal properties 

of  the material. 

Diethyl ethers of succinic acid are used extensively in the chemical industry for the production of dyestuffs, alkyd 
resins, succinates, light-sensitive materials, etc. However, the literature contains inadequate information with respect 
to the thermophysical properties of these materials. With this in mind, we undertook an investigation into the P-p-T 
dependences of diethyl succinate at pressures of 0.1-49.1 MPa and temperatures ranging from room temperature to 500 
K. The substance tested to a total chemical purity of 98.6%. 

The measurements were carried out by means of a hydrostatic suspension method with a maximum error of 0.1% 
over the entire investigated range of parameters of state. A new experimental setup was designed and constructed for 

/ 

the purposes of this study, and it made use of elements from other experimental units designed by the authors [1, 2]. 
This unit differs from the ones with which we are familiar in that the sensor coil is positioned outside of the medium 
being studied, thus making it possible to simplify its operation and to raise operational reliability. 

The elements of the suspension system were calibrated by a method of hydrostatic suspension in water (bidistillate) 
with the aid of VLA-200G-M-type analytical balances, using the method familiar from [3-5]. The parameters of the 
elements of this suspension system (the volumes) were as follows: a silver steel core 0.4210 cm s, the filament 0.0047 cm s, 
and a solid quartz float 2.8173 cm 8. In a vacuum the system weighed 9.5253 g. 

The density was measured from the isotherms. Nine isotherms yielded 58 experimental density values, each of 
which is the result from the averaging 3-4 multiple measurements. These quantities have been tabulated in Table 1. 
The literature provides information with respect to density at 20"C for diethyl succinate [6], and these are in agreement 
with our data with an error of 0.1%. 

The temperature of this material was measured during the experiments by means of a platinum resistance-type 
PTS-10 thermometer of the first category, in conjunction with a U-309 potentiometer unit. 

Pressure was generated and measured by means of an MP-600 type piston manometer of the 0.05 class. In order 
to separate the oil of the piston manometer from the material being tested in the compression vessel, we made use of a 
thin-walled Capron (polycaprolactam resin) tube out of BF-6 cement whose sensitivity was 0.0001 MPa. The material 
of the divider was inert with respect to the substance being tested. This was verified by suspension of the tube prior 
to and subsequent to the measurement. 

Analysis of the experimental material demonstrated that for the given substance the following equation of state 
is most appropriate [7, 8]: 

P --- A (T/Tboi) 9 2 q- B (T/Tboi) 9 s, (1) 

where P is the external pressure, MPa; T is temperature, K; pis density of the liquid, g/cm3; Tbo i is the normal boiling 
point; A(T/Tbo i) and B(T/Tbo i) have been calculated by the method of least squares for each of the isotherms and described 
analytically in the form of the T/Tbo i polynomial: 
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